Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Vectorial partners of the Standard Model quarks and leptons are predicted in many dynamical models of electroweak symmetry breaking. The most easily accessible of these new particles, either due to mass or couplings, are typically expected to be the partners of the third-generation fermions. It is therefore essential to explore the signatures of these particles at future high-energy colliders. We study the potential of a high- energy muon collider to singly produce a vectorlike top-quark partner via an electroweak dipole moment operator, such an operator being typical of composite constructions beyond the Standard Model. We use a phenomenological model for third-generation quarks and their partners that satisfies an extended custodial symmetry. This automatically protects the W-boson and Z-boson masses from receiving large electroweak corrections, and it allows the model to be viable given current electroweak data. We demonstrate that cross sections associated with dipole-induced vectorlike quark production can easily exceed those inherent to more conventional single-production modes via ordinary electroweak couplings. We then explore the associated phenomenology, and we show that at least one (and often more than one) of the extra vectorlike states can be studied at high-energy muon colliders. Typical accessible masses are found to range up to close to the kinematic production threshold, when the vectorlike partners are produced in combination with an ordinary top quark.more » « less
-
Abstract Some of the most astonishing and prominent properties of Quantum Mechanics, such as entanglement and Bell nonlocality, have only been studied extensively in dedicated low-energy laboratory setups. The feasibility of these studies in the high-energy regime explored by particle colliders was only recently shown and has gathered the attention of the scientific community. For the range of particles and fundamental interactions involved, particle colliders provide a novel environment where quantum information theory can be probed, with energies exceeding by about 12 orders of magnitude those employed in dedicated laboratory setups. Furthermore, collider detectors have inherent advantages in performing certain quantum information measurements and allow for the reconstruction of the state of the system under consideration via quantum state tomography. Here, we elaborate on the potential, challenges, and goals of this innovative and rapidly evolving line of research and discuss its expected impact on both quantum information theory and high-energy physics.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract We here report on the progress of the HHH Workshop, that took place in Dubrovnik in July 2023. After the discovery of a particle that complies with the properties of the Higgs boson of the Standard Model, all Standard Model (SM) parameters are in principle determined. However, in order to verify or falsify the model, the full form of the potential has to be determined. This includes the measurement of the triple and quartic scalar couplings. We here report on ongoing progress of measurements for multi-scalar final states, with an emphasis on three SM-like scalar bosons at 125$$\,\text {Ge}\hspace{-.08em}\text {V}$$ , but also mentioning other options. We discuss both experimental progress and challenges as well as theoretical studies and models that can enhance such rates with respect to the SM predictions.more » « less
-
null (Ed.)We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data.more » « less
-
Abstract Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments—as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER—to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity ‘dark showers’, highlighting opportunities for expanding the LHC reach for these signals.more » « less
An official website of the United States government

Full Text Available